Heffernan S, Horner K, De Vito G, Conway G, Heffernan SM, Horner K, et al. The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review. Nutrients. 2019;11(3):696. https://doi.org/10.3390/nu11030696.
Speich M, Pineau A, Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta. 2001;312(1-2):1–11. https://doi.org/10.1016/S0009-8981(01)00598-8.
Williams MH. Dietary supplements and sports performance: minerals. J Int Soc Sports Nutr. 2005;2(1):43. https://doi.org/10.1186/1550-2783-2-1-43.
Prashanth L, Kattapagari K, Chitturi R, Baddam VR, Prasad L. A review on role of essential trace elements in health and disease. J Dr NTR Univ Heal Sci. 2015;4:75.
Wolinsky I, Driskell JA. Sports nutrition: vitamins and trace elements: CRC Press; 2005.
Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–15. https://doi.org/10.1016/j.jtemb.2016.02.006.
Tapiero H, DáM T, Tew KD. Trace elements in human physiology and pathology copper. Biomed Pharmacother. 2003;57(9):386–98. https://doi.org/10.1016/s0753-3322(03)00012-x.
Hordyjewska A, Popiołek Ł, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014;27(4):611–21. https://doi.org/10.1007/s10534-014-9736-5.
Collins JF. Copper: Basic Physiological and Nutritional Aspects. In: Collins JF, editor. Mol Genet Nutr Asp Major Trace Miner. Cambridge: Academic Press; 2016. p. 69–83.
Prohaska JR. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr. 2011;2(2):89–95. https://doi.org/10.3945/an.110.000208.
Baker ZN, Cobine PA, Leary SC. The mitochondrion: a central architect of copper homeostasis. Metallomics. 2017;9(11):1501–12. https://doi.org/10.1039/C7MT00221A.
Johnson MA, Fischer JG, Kays SE. Is copper an antioxidant nutrient? Crit Rev Food Sci Nutr. 1992;32(1):1–31. https://doi.org/10.1080/10408399209527578.
Lightfoot DJ, McGrann GR, Able AJ. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. Mol Plant Pathol. 2017;18(3):323–35. https://doi.org/10.1111/mpp.12399.
Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22(1):439–58. https://doi.org/10.1146/annurev.nutr.22.012502.114457.
Vashchenko G, MacGillivray RT. Multi-copper oxidases and human iron metabolism. Nutrients. 2013;5(7):2289–313. https://doi.org/10.3390/nu5072289.
Shils ME, Shike M, Catharine Ross A, Caballero B, Cousins RJ. Modern nutrition in health and disease. Shils ME, Shike M, Catharine Ross A, Caballero B, Cousins RJ, editors. Philadelphia: Lippincott Williams and Wilkins; 2006.
Solano F. On the metal cofactor in the tyrosinase family. Int J Mol Sci. 2018;19(2). https://doi.org/10.3390/ijms19020633.
Maynar-Mariño M, Grijota FJ, Bartolomé I, Siquier-Coll J, Román VT, Muñoz D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J Int Soc Sports Nutr. 2020;17:1–7.
Rodriguez Tuya I, Pinilla Gil E, Maynar Mariño M, García-Moncó Carra RM, Sánchez MA. Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol Occup Physiol. 1996;73(3-4):299–303. https://doi.org/10.1007/BF02425490.
Maynar M, Bartolomé I, Alves J, Barrientos G, Grijota FJ, Robles MC, et al. Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. J Int Soc Sports Nutr. 2019;16(1):53. https://doi.org/10.1186/s12970-019-0322-7.
Muñoz D, Maynar M, Barrientos G, Siquier-Coll J, Bartolomé I, Grijota FJ, et al. Effect of an acute exercise until exhaustion on the serum and urinary concentrations of cobalt, copper, and manganese among well-trained athletes. Biol Trace Elem Res. 2019;189(2):387–94. https://doi.org/10.1007/s12011-018-1500-1.
Maynar M, Llerena F, Bartolomé I, Alves J, Robles M-C, Grijota F-J, et al. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J Int Soc Sports Nutr. 2018;15(1):8. https://doi.org/10.1186/s12970-018-0212-4.
Maynar M, Grijota FJ, Siquier-Coll J, Bartolome I, Robles MC, Muñoz D. Erythrocyte concentrations of chromium, copper, manganese, molybdenum, selenium and zinc in subjects with different physical training levels. J Int Soc Sports Nutr. 2020;17:1–9.
Siquier-Coll J, Bartolomé I, Perez-Quintero M, Grijota FJ, Arroyo J, Muñoz D, et al. Serum, erythrocyte and urinary concentrations of iron, copper, selenium and zinc do not change during an incremental test to exhaustion in either normothermic or hyperthermic conditions. J Therm Biol. 2019;86:102425.
Piomelli S, Seaman C. Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol Wiley Online Library. 1993;42(1):46–52. https://doi.org/10.1002/ajh.2830420110.
Harker LA. The kinetics of platelet production and destruction in man. Clin Haematol. 1977;6(3):671–93.
Porta J, Galiano D, Tejedo A, González JM. Valoración de la composición corporal. Utopías y realidades. In: Esparza Ros F (Ed). Manual de Cineantropometría. Madrid; Grupo Español de Cineantropometría; 1993. p. 113–170.
Stewart A, Marfell-Jones M, Olds T, Ridder de H. International Society for the Advancement of Kinantropometry. In: Int Stand Anthr Assessment Aust Low Hutt, New Zeal Int Soc Adv Kinanthropometry; 2001.
Moreiras O, Carbajal A, Cabrera L, Cuadrado C. Tablas de composición de alimentos: guía de prácticas. Madrid: Pirámide; 2016.
Hagströmer M, Oja P, Sjöström M. The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr Cambridge University Press. 2006;9(6):755–62. https://doi.org/10.1079/PHN2005898.
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB.
Aibar A, García González L, Abarca Sos A, Murillo B, Zaragoza J. Testing the validity of the international physical activity questionnaire in early spanish adolescent: a modified protocol for data collection. Sport TK Rev Euroam Ciencias Deport. 2016;5(2):123–32.
Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014;1:19–25.
Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge Academic; 1988.
Lu Y, Ahmed S, Harari F, Vahter M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol. 2015;29:249–54. https://doi.org/10.1016/j.jtemb.2014.08.012.
Catalani S, Marini M, Consolandi O, Gilberti ME, Apostoli P. Potenzialità ed utilità del dosaggio di elementi metallici nelle piastrine. G Ital Med Lav Erg. 2008;30:115–8.
Heitland P, Köster HD. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J Trace Elem Med Biol. 2021;64:126706. https://doi.org/10.1016/j.jtemb.2020.126706.
San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sport Med. 2018;48(2):467–79. https://doi.org/10.1007/s40279-017-0751-x.
Lukaski HC, Siders WA, Hoverson BS, Gallagher SK. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int J Sports Med. 1996;17(07):535–40. https://doi.org/10.1055/s-2007-972891.
Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human; 2007. https://doi.org/10.1007/978-3-540-32714-1.
Calleja CA, Hurtado MMC, Daschner Á, Escámez PF, Abuín CMF, Pons RMG, et al. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la población española: Rev del Com Científico la AESAN. Agencia Española de Seguridad Alimentaria y Nutrición; 2019. p. 43–68.
Lukaski HC, Bolonchuk WW, Klevay LM, Milne DB, Sandstead HH. Maximal oxygen consumption as related to magnesium, copper, and zinc nutriture. Am J Clin Nutr. 1983;37(3):407–15. https://doi.org/10.1093/ajcn/37.3.407.
Gropper SS, Sorrels LM, Blessing D. Copper status of collegiate female athletes involved in different sports. Int J Sport Nutr Exerc Metab. 2003;13(3):343–57. https://doi.org/10.1123/ijsnem.13.3.343.
Nuviala RJ, Lapieza MG, Bernal E. Magnesium, zinc, and copper status in women involved in different sports. Int J Sport Nutr. 1999;9(3):295–309. https://doi.org/10.1123/ijsn.9.3.295.
Dressendorfer RH, Sockolov R. Hypozincemia in runners. Phys Sportsmed. 1980;8(4):97–100. https://doi.org/10.1080/00913847.1980.11710918.
Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med J. 2003;44(6):979–86. https://doi.org/10.3349/ymj.2003.44.6.979.
Rakhra G, Masih D, Vats A, Verma SK, Singh VK, Rana RT, et al. Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition. 2017;43–44:75–82.
Lukaski HC, Hoverson BS, Gallagher SK, Bolonchuk WW. Physical training and copper, iron, and zinc status of swimmers. Am J Clin Nutr. 1990;51(6):1093–9. https://doi.org/10.1093/ajcn/51.6.1093.
Koury JC, de Olilveria AV Jr, Portella ES, de Olilveria CF, Lopes GC, Donangelo CM. Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int J Sport Nutr Exerc Metab. 2004;14(3):358–72. https://doi.org/10.1123/ijsnem.14.3.358.
Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Environ Med. 2002;73:991–5.
Aruoma OI, Reilly T, MacLaren D, Halliwell B. Iron, copper and zinc concentrations in human sweat and plasma; the effect of exercise. Clin Chim Acta. 1988;177(1):81–7. https://doi.org/10.1016/0009-8981(88)90310-5.
Dowdy RP, Burt J. Effect of intensive, long-term training on copper and iron nutriture in man. Fed Proc. Rockville Pike: Federation of American Societies for Experimental Biology; 1980. p. 786.
Holloszy JO. Adaptation of skeletal muscle to endurance exercise. Med Sci Sports. 1975;7:155.
Holloszy JO. Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82. https://doi.org/10.1016/S0021-9258(18)96046-1.
Tumulty D. Physiological characteristics of elite football players. Sport Med. 1993;16(2):80–96. https://doi.org/10.2165/00007256-199316020-00002.
Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101(1):17–22. https://doi.org/10.1113/EP085319.
Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol Front. 2017;8:713.
Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sport Med. 2018;48(8):1809–28. https://doi.org/10.1007/s40279-018-0936-y.
Singh A, Deuster PA, Moser PB. Zinc and copper status in women by physical activity and menstrual status. J Sports Med Phys Fitness. 1990;30(1):29–36.
Mena P, Maynar M, Gutierrez JM, Maynar J, Timon J, Campillo JE. Erythrocyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int J Sports Med. 1991;12(06):563–6. https://doi.org/10.1055/s-2007-1024734.
Kies C. Copper bioavailability and metabolism: Springer Science & Business Media; 1989. https://doi.org/10.1007/978-1-4613-0537-8.
Vitoux D, Arnaud J, Chappuis P. Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology? J Trace Elem Med Biol. 1999;13(3):113–28. https://doi.org/10.1016/S0946-672X(99)80001-7.
Nishito Y, Kambe T. Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol (Tokyo). 2018;64(1):1–7. https://doi.org/10.3177/jnsv.64.1.
Fischer PW, Giroux A, L’abbe MR. The effect of dietary zinc on intestinal copper absorption. Am J Clin Nutr. 1981;34(9):1670–5. https://doi.org/10.1093/ajcn/34.9.1670.
Wapnir RA, Balkman C. Inhibition of copper absorption by zinc. Biol Trace Elem Res. 1991;29(3):193–202. https://doi.org/10.1007/BF03032677.
Kiem J, Borberg H, Iyengar GV, Kasperek K, Siegers M, Feinendegen LE, et al. Elemental composition of platelets. Part II. Water content of normal human platelets and measurements of their concentrations of cu, Fe, K, and Zn by neutron activation analysis. Clin Chem. 1979;25(5):705–10. https://doi.org/10.1093/clinchem/25.5.705.
Abella A, Clerc D, Chalas J, Baret A, Leluc R, Lindenbaum A. Concentrations of superoxide dismutase (copper and manganese), catalase and glutathione peroxidase in red cells, platelets and plasma in patients with rheumatoid polyarthritis. Ann Biol Clin (Paris). 1987;45:152.
Laškaj R, Dodig S, Čepelak I, Kuzman I. Superoxide dismutase, copper and zinc concentrations in platelet-rich plasma of pneumonia patients. Ann Clin Biochem. 2009;46(2):123–8. https://doi.org/10.1258/acb.2008.008178.